職測數(shù)量關(guān)系:特值法解決多者合作問題
來源:永岸公考
2024-08-07 11:17:02
職測試卷中的“數(shù)量關(guān)系”往往讓部分?jǐn)?shù)學(xué)基礎(chǔ)不好的同學(xué)不知如何是好。其原因在于,一方面,同學(xué)們想取得優(yōu)異名次,那么高分必不可少、每模塊正確率都需拉高;另一方面此題型考點多,許多人想學(xué)但無從下手。今天帶大家一起來學(xué)習(xí),數(shù)量關(guān)系中的多者合作問題中常用的兩種技巧。
【公式】
工程問題核心公式:工作總量(W)=工作效率(p)×工作時間(t)
一、什么是多者合作
多個主體通過一定的方式合作完成某項工作。特點是,有多個主體完成同一項工作。題目中,“總效率往往等于多個主體的效率之和、總工作量等于多個主體的工作量之和”。并且,根據(jù)題目所給數(shù)據(jù),我們往往可以利用特值法,通過找“工作總量”或“工作時間”的等量關(guān)系,來列式求解此類問題。
二、解題技巧
(一)當(dāng)給出多個主體各自的完工時間時,則可特值工作總量為完工時間的公倍數(shù)。
【例1】某項工程,甲工程隊單獨施工需要30天完成,乙工程隊單獨施工需要25天完成。甲隊單獨施工了4天后,改由兩隊一起施工,期間甲隊休息了若干天,最后整個工程共耗時19天完成,問甲隊中途休息了幾天?
A.1
B.3
C.5
D.7
答案:D
【解析】特值工作總量為30和25的最小公倍數(shù)150,則甲、乙兩隊的工作效率分別為5、6。
(二)當(dāng)(直接或間接)給出多個主體的效率關(guān)系時,則可特值多個主體各自效率為效率最簡比的數(shù)值。
【例2】某醫(yī)療器械公司為完成一批口罩訂單生產(chǎn)任務(wù),先期投產(chǎn)了A和B兩條生產(chǎn)線,A和B的工作效率之比是2∶3,計劃8天可完成訂單生產(chǎn)任務(wù)。兩天后公司又投產(chǎn)了生產(chǎn)線C,A和C的工作效率之比為2∶1。問該批口罩訂單任務(wù)將提前幾天完成?
A.1
B.2
C.3
D.4
答案:A
【解析】題干直接給出A、B、C的工作效率之比為2∶3∶1,則特值A(chǔ)的工作效率為2,B的工作效率為3,C的工作效率為1,生產(chǎn)任務(wù)總量為(2+3)×8=40。根據(jù)“兩天后公司又投產(chǎn)了生產(chǎn)線C”,可知A和B合作生產(chǎn)兩天,剩余任務(wù)量由A、B、C共同完成。設(shè)A、B、C的合作時間為t天,可得(2+3)×2+(2+3+1)×t=40,解得t=5,則完成全部任務(wù)共用2+5=7天,則該批口罩訂單任務(wù)將提前8-7=1天完成。
免費學(xué)習(xí)資源(關(guān)注可獲取最新開課信息)